BQN's Quantum Noise
Preamble
We will implement and test a compact quantum interpreter in the BQN1 programming language. Initially, we import the necessary system functions and define a 1-modifier for handling complex matrix products. Next, we define a namespace containing various quantum gates:
Sin‿Cos‿GCD ← •math U ← •rand.Range _cp ← {(-´𝔽¨)⋈(+´𝔽¨)⟜⌽} g ← { IM ← (⊢⋈≢⥊⟜0⊢)¨ x‿id‿h ⇐ (⌽‿⊢{𝕎𝕩}¨<=⌜˜↕2) ∾○IM <-⌾(1‿1⊸⊑)2‿2⥊÷√2 swap‿cnot ⇐ IM ⟨1‿2, 2‿3⟩ {⌽⌾(𝕨⊸⊏)𝕩}¨ <=⌜˜↕4 P ⇐ {⟨=⌜˜↕4, 4‿4⥊0⟩ {𝕨⌾(3‿3⊸⊑) 𝕩}¨˜ Sin⊸⋈⟜Cos 𝕩} }
Interpreter
The (400 chars2) quantum interpreter is based on references arXiv:1711.02086 and arXiv:1608.03355. For simplicity, we always measure at the end of the execution:
Q ← {𝕊qb‿sc‿r: wf ← (1⌾⊑⋈⊢)⥊⟜0 2⋆qb M‿K ← ⟨+˝∘×⎉1‿∞ _cp, {1𝕊𝕩:𝕩; 𝕨𝕊1:𝕨; 𝕨∾∘×⟜<_cp𝕩}⟩ E ← {0𝕊𝕩:1; K⍟(𝕨-1)˜𝕩} L ← {K´ ⟨(qb-𝕨+⌊2⋆⁼≠⊑𝕩) E g.id, 𝕩, 𝕨 E g.id⟩} T ← ∾↕∘≠{a←𝕩, i←𝕨{𝕩⊑a}•_while_{𝕩<𝕨}𝕨⊑a, 𝕨<◶⟨⟩‿{(⊢∾1⊸↓∘⌽)𝕨+↕𝕩-𝕨}i}¨< A ← {qs‿gs𝕊v: 1⊸=◶{𝕊𝕩: ui ← 0 L gs v M˜ {𝕊⟨⟩:ui; (M˜´M⟜ui⟜M˜M´) L⟜g.swap¨ 𝕩} T qs (⌽∘⊢∾¬∘∊/⊣)˜ ↕qb }‿(v M˜ gs L˜ ⊑qs) ≠qs} »⊸<∨` 0>r-`>+○(ט)˝ wf A´ ⌽sc }
Shor's algorithm
As a test case, we employ the quantum circuit of Shor's algorithm for the number fifteen and base eleven, following references arXiv:1804.03719 and arXiv:2306.09122. The resulting compiled circuit uses five qubits, three of which serve as control. To enhance statistical accuracy, the experiment is repeated multiple times. Additionally, we define a classical post-processing function:
n‿a‿qb‿r ← ⟨15, 11, 5, 0 U˜ 2⋆3⟩ sc ← ⟨ ⟨0⟩‿g.h ⋄ ⟨1⟩‿g.h ⋄ ⟨2⟩‿g.h ⟨2, 3⟩‿g.cnot ⋄ ⟨2, 4⟩‿g.cnot ⋄ ⟨1⟩‿g.h ⟨⟨1, 0⟩, g.P π÷2⟩ ⋄ ⟨0⟩‿g.h ⟨⟨1, 2⟩, g.P π÷4⟩ ⋄ ⟨⟨0, 2⟩, g.P π÷2⟩ ⋄ ⟨2⟩‿g.h ⟩ C ← {n (⊣≡×´∘GCD) +‿-{𝕩𝕎1}¨ <a⋆(≠÷2×⊑∘⍒) 0⌾⊑+˝∘‿(2⋆qb-2)⥊𝕩}
Wir müssen wissen, wir werden wissen!3
C >+˝{Q qb‿sc‿𝕩}¨ r
1
Compare the result with that from a real quantum computer.
Epilogue
Why the hieroglyphs, you may ask? The tacit and functional style, coupled with numerous combinators, makes programming feel like solving a fun algebraic puzzle rather than drafting a manifesto. BQN is the epitome of minimalism's power:
Primitive's stats
The prog
string contains the full source code. We used:
prog (+´⊸≍⟜≠∊)˜ ⊑¨•primitives
⟨ 44 64 ⟩
With this distribution:
⍉>(⍷∾≠)¨∘(⊐⊸⊔∊/⊣)⟜(⊑¨•primitives)˜ prog
┌─ ╵ '-' '´' '¨' '⋈' '+' '⟜' '⌽' '⊢' '≢' '⥊' '<' '=' '⌜' '˜' '↕' '∾' '○' '⌾' '⊸' '⊑' '÷' '√' '⊏' '⋆' '˝' '∘' '×' '⎉' '≡' '⊣' '⌊' '⁼' '≠' '⍟' '◶' '↓' '¬' '∊' '/' '»' '∨' '`' '>' '⍒' 8 8 10 5 8 3 6 7 1 5 9 6 3 12 6 5 2 5 7 9 5 1 1 5 4 8 5 1 3 3 1 1 5 1 2 1 1 1 1 1 1 2 3 1 ┘
BQN is also fast:
Benchmarks
While the interpreter's performance is not particularly optimized, here is a comparison with the equivalent Common Lisp code:
Benchmark 1: cbqn -f ./perf/q.bqn Time (mean ± σ): 5.468 s ± 0.077 s [User: 5.427 s, System: 0.005 s] Range (min … max): 5.358 s … 5.535 s 5 runs Benchmark 2: sbcl --script ./perf/q.lisp Time (mean ± σ): 37.114 s ± 0.893 s [User: 37.544 s, System: 0.207 s] Range (min … max): 36.457 s … 38.634 s 5 runs Summary cbqn -f ./perf/q.bqn ran 6.79 ± 0.19 times faster than sbcl --script ./perf/q.lisp
And here is a full program's profile. All time is spent in the Kronecker and matrix products:
)profile C >+˝{Q qb‿sc‿𝕩}¨ r
Got 25361 samples (REPL): 25361 samples: 2│ Q ← {𝕊qb‿sc‿r: 1│ wf ← (1⌾⊑⋈⊢)⥊⟜0 2⋆qb 2471│ M‿K ← ⟨+˝∘×⎉1‿∞ _cp, {1𝕊𝕩:𝕩; 𝕨𝕊1:𝕨; 𝕨∾∘×⟜<_cp𝕩}⟩ 26│ E ← {0𝕊𝕩:1; K⍟(𝕨-1)˜𝕩} 39│ L ← {K´ ⟨(qb-𝕨+⌊2⋆⁼≠⊑𝕩) E g.id, 𝕩, 𝕨 E g.id⟩} 16│ T ← ∾↕∘≠{a←𝕩, i←𝕨{𝕩⊑a}•_while_{𝕩<𝕨}𝕨⊑a, 𝕨<◶⟨⟩‿{(⊢∾1⊸↓∘⌽)𝕨+↕𝕩-𝕨}i}¨< 1│ A ← {qs‿gs𝕊v: 4│ 1⊸=◶{𝕊𝕩: ui ← 0 L gs 22430│ v M˜ {𝕊⟨⟩:ui; (M˜´M⟜ui⟜M˜M´) L⟜g.swap¨ 𝕩} T qs (⌽∘⊢∾¬∘∊/⊣)˜ ↕qb 366│ }‿(v M˜ gs L˜ ⊑qs) ≠qs} 5│ »⊸<∨` 0>r-`>+○(ט)˝ wf A´ ⌽sc │ }
Try running the simulation in the BQN repl and explore it! The complete source code is hosted in a GitHub repository. Additionally, I recommend reading Stylewarning's blog post, which served as an inspiration for this one and kindly lists it as a re-implementation.
Footnotes:
This post's title is a playful recursive acronym that employs quantum computing terminology, without any specific significance beyond that.
I optimized it up to this number, but I wasn't targeting the Kolmogorov complexity.
Hilbert's radio address in 1930.